Technology

Customizing LLMs: Parameter-Efficient Fine-Tuning

Parameter-Efficient Fine-Tuning or PEFT is a more efficient approach to adapting large language models (LLMs) compared to traditional full fine-tuning. Instead of modifying the entire model, PEFT focuses on fine-tuning only a small subset of the model’s parameters, making it less resource-intensive. This allows for faster adaptation to specific tasks while maintaining most of the pre-trained knowledge of the model, offering a cost-effective solution for improving performance on specialized tasks.

Read More

Customizing LLMs: Retrieval Augmented Generation

Retrieval Augmented Generation or RAG is a technique that enables generative artificial intelligence (Gen AI) models to retrieve and incorporate new information. It modifies interactions with a large language model (LLM) so that the model responds to user queries with reference to a specified set of documents, using this information to supplement information from its pre-existing training data. This allows LLMs to use domain-specific and/or updated information (Wikipedia) .

Read More